قانون محيط المثلث بالرموز

قانون محيط المثلث بالرموز

قانون محيط المثلث بالرموز، اليوم سوف نقدم لكم قانون محيط المثلث بالرموز حيث أن المثلث من الأشكال الهندسية ويتألف من 3 أضلاع بالإضافة إلى 3 زوايا، كما أن هذه الزوايا تختلف طبقًا لشكل المثلث، ومجموع هذه الزوايا 180 درجة، وسنتعرف أكثر عن المثلث ومحيطه من خلال المقال.

ما هو المثلث؟

  • يُعد المثلث أحد الأشكال الهندسية المغلقة المُستخدمة بمجال الهندسة، كما أنه شكل يكون ثلاثي الرؤوس وأيضًا الأضلاع المحددة لقطعًا مستقيمًا، ومن أهم الشروط التي تكون متوفرة بالمثلث هو أن يُصبح واحد من الأضلاع أقل إلى حد ما من الضلعين الآخرين.
  • إن تصنيف المثلث يكون طبقًا طول الأضلاع التي تنقسم لثلاثة وهما متساوي الساقين مثلث متساوي الأضلاع المثلث قائم الزاوية، كما أنه يوجد معيار آخر من أجل تقسيم المثلثات من خلال قياس زواياه، لذا فإنه يوجد مثلث حاد الزاوية وأخر منفرج الزاوية.
  • كما أن للمثلث قوانين عديدة منها القانون الأساسي وهو ينص على أن تكون مساحة المثلث تُعادل نصف الطول الخاص بقاعدة المثلث وتكون مضروبة في ارتفاع المثلث.
  • ويوجد قانون هيرون الذي يقوم بحساب مساحة المثلث باستعمال أطوال الأضلاع الخاصة بالمثلث، حيث أن يتم جمع الأطوال في حالة أن يكون المثلث متساوي الأضلاع.

شاهد أيضًا: ما هو قانون تحويل درجات الحرارة

ما هي أنواع المثلثات؟

  • قائم الزاوية: يحتوي هذا النوع من المثلثات على زاوية قائمة ويكون قياسها 90 درجة، كما أن مجموعة باقي الزاويتين يكونان 90 درجة، كما أنه معروف بين التلاميذ حيث أن قوانينه سهلة وواضحة.
  • حاد الزاوية: تكون زواياه اقل من حوالي 90 درجة، وهو يكون صعب على بعض الطلاب، حيث أن المثلث الذي يكون حاد الزوايا لم يتم معرفة زوايا بسهولة بل أنه يحتاج إلى تفكير من أجل التعرف على كافة زوايا.
  • منفرج الزاوية: يمتاز هذا النوع من المثلثات بأنه يوجد به زاوية قياسها بين 90 درجة و180 درجة، كما أنها تكون سهلة على الطلاب لأن زواياه تكون شديدة الانفراج.
  • متساوي الأضلاع: إن هذا المثلث تكون أضلاع الثلاثة متشابهة في القياس وتكون زواياه حوالي 60 درجة.
  • متساوي الساقين: يوجد به ضلعان بنفس القياس أو الزاوية الثلاثة تختلف في قياسها عن الضلعين الآخرين.
  • مختلف الأضلاع: هو من المثلثات المُستخدمة بشكل كبير في القوانين المثلثية حيث أنه يمتاز باختلاف كافة أضلاعه بالإضافة إلى زواياه المختلفة.

خصائص المثلث

  • تقع كافة الزوايا التي تكون متساوية بمقابل الأضلاع الأخرى.
  • مجموع الزوايا هو 180 درجة وهذا يدل على أن هناك زاويتان قائمتان.
  • لا يوجد بالمثلث الذي يحتوي على زاوية منفرجة يكون به زاوية قائمة فقط.
  • يحتوي المثلث الذي يكون منفرج على زاوية منفرجة واحدة فقط.
  • لا يحتوي المثلث على أقطار.
  • إن أكبر ضلع بالمثلث يقابله أكبر زواياه.
  • إن قياس الثلاث زوايا يكون مُساوي لأي مُثلث به مجموع قياس الزاويتين الداخليتين.
  • إن زوايا المثلث المتناظرة تكون أيضًا متطابقة أما عن الأضلاع المتناظرة فإنها تكون متساوية.

قانون محيط المثلث بالرموز

  • المحيط هو المسافة التي تكون بالشكل الذي يكون ثنائي الأبعاد، بمعنى أنه ناتج جمع كافة أطوال أضلاع المثلث، ومن أجل إيجاد محيطه فإنه لابد من جمع أطواله وسيصبح الناتج هو بُعد واحد، وهو كالتالي محيط المثلث يساوي جمع طول أطوال المثلث.
  • مثال 1: مثلث يكون مختلف الأضلاع، ضلعه الأول يكون 9سم أما الثاني فهو 12 سم، بالإضافة إلى الضلع الثالث يكون 7 سم فما محيطه، الحل هو يتم جمع كافة الأطوال 12+9+7=28 سم.
  • مثال 2: مثلث أضلاعه كالتالي 5 سم و8 سم و9 سم فما محيطه، إن محيط المثلث= ناتج جمع الأضلاع الثلاثة أي الضلع الأول+ الضلع الثاني+ الضلع الثالث، 5+8+9= 22 سم.
  • مثال 3: مثلث ذو أطوال أضلاع 11 سم بالإضافة 5 سم و9 سم ومحيطه هو، محيط المثلث يساوي الجمع بين الأضلاع الثلاثة وهو 11+ 9+ 5= 25 سم.
  • مثال 4: مثلث ذو ضلع الأول 6 سم أما الثاني 10 سم بالإضافة إلى الثالث 8 سم فإن محيطه يكون كالتالي، من خلال ناتج جمع أطوال أضلاع المثلث الثلاثة وهو 8+ 10+6= 24 سم.
  • مثال 5: مثلث يكون متساوي الأضلاع، يتكون من ضلعه 6 سم فإن محيطه كالآتي، ولأن المثلث يكون أضلاعه متساوية فإن كافة أضلاعه تكون جمع الثلاثة أضلاع وهي 6+6+6= 18 سم.
  • مثال 6: ما هو طول ضلع مثلث يكون متساوي الساقين في حين أن المحيط به 10 سم وطول الضلعين 3 سم، الحل هو محيط المثلث = أطوال أضلاع المثلث الثلاثة كالتالي 10=3+3+ الطول الخاص بالضلع الثالث وهو 10=6+ الطول الذي يخص الضلع الثالث من خلال طرح 6 من الطرفين فستكون النتيجة هي 4سم.

شاهد أيضًا: طريقة تحويل الباوند للكيلو 

محيط المثلث متساوي الساقين

  • من أجل التعرف على محيط المثلث فإنه لابد من التعرف على أطوال أضلاعه، وبعد ذلك يتم وضع قانون المحيط وهو مجموع الأطوال، بمعنى أننا نقوم بجمع الأطوال الثلاثة من أجل الحصول على الناتج الخاص بمحيط المثلث.
  • إن كان هناك مُثلث طول واحد من ضلعه 7 سم مع الطول الخاص بالضلع الثالث حوالي 10 سم، فإن المحيط يكون (7×2 + 10) = 24 سم.
  • إن كان محيط المثلث 16 سم وقاعدته 6 سم فما هو طول ضلعيه، الحل هو محيط المثلث يساوي مجموع أضلاع المثلث يساوي القاعدة + طول ضلعين المثلث هو 16 – 6= 10م.
  • لابد من استعمال وحدة قياس واحدة لكافة أطوال أضلاع المثلث، حيث أنه لا يصح استخدام السنتيمتر لطول ضلع ومتر لضلعي الآخرين، فإن كان أحد الضلعين هو 4 سم وطول القاعدة 69 ملم ومطلوب قيمة المحيط، فإنه في البداية سوف يتم تحويل الوحدة ويكون الناتج “4×2+6″=14 سم.

محيط المثلث متوازي الأضلاع

  • إن المحيط الذي يكون متوازي الأضلاع فإنه يُعاد مجموعة الأطوال الأربعة وهو يُساوي 2 * “طول الضلع الأكبر + طول الضلع الأصغر”، مثال على ذلك متوازي أضلاع ذو ضلع أكبر 8 سم والضلع الأصغر 6 سم يُصبع محيط 2× ” 8 + 6″ = 2 ×48 = 96 سم.
  • متوازي أضلاع يكون محيطه 24 سم وضلع الأصغر 5 سم فما هو حساب ضلعه الأكبر، طوله يساوي 24 – “2×5” = 24 -10 =14 فإن طول الضلع = 14 / 2= 7 سم.
  • متوازي أضلاع ذو ضلع أكبر يكون طوله حوالي 5 سم، أما ضلعه الأصغر فهو 5 سم فإن محيطه يكون من خلال التالي: لأن طول الضلع الذي يكون أكبر يكون مُساوٍ الضلع الأصغر، لذا فإن محيط المربع يساوي 4× طول الضلع وهو 4×5= 20 سم.

قانون محيط المثلث القائم

  • إن الحساب الخاص بمحيط المثلث الذي يكون قائم لا يكون به أي اختلاف عن الحساب الخاص بباقية المثلثات، حيث أنه عندما يوجد أطوال خاصة بأضلاع المثلث فإنه ينتج المحيط، حيث أنه يكون مُعبر بشكل كبير عن المسافة المُحيطة بالمثلث من خلال حساب الأطوال الثلاثة.
  • ساهمت الاكتشافات التي قام العلماء بالتوصل إليها من خلال دراسة المثلثات بأن هناك قوانين هامة خاصة بالمثلث القائم، ومن أهم هؤلاء العلماء هو فيثاغورس الذي وضع نظريات خاصة بالهندسة، بالإضافة إلى النظريات التي قد قدمها فيثاغورس لعلم الرياضيات.
  • كما أنه وضع نظريته فيثاغورس وهي عبارة عن حساب طول ثالث ضلع قائم الزاوية، بالإضافة إلى حساب الضلع المقابل للزاوية القائمة، لذا فإن نظرية فيثاغورس هي “طول الوتر”²=”طول الضلع الأول”²+” طول الضلع الثاني”²

شاهد أيضًا: معلومات عن الرياضيات هل تعلم

في ختام مقالنا عن قانون محيط المثلث بالرموز حيث أن المثلث من الأشكال المستخدمة بكثرة في الرياضيات، ولكن هناك أنواع عديدة من المثلثات وقد تعرفنا عليها من خلال المقال، بالإضافة إلى أننا تكلمنا على محيط المثلث، نتمنى أن يكون الموضوع قد أفادكم وننتظر آرائكم.

أترك تعليق